1,063 research outputs found

    Finding large stable matchings

    Get PDF
    When ties and incomplete preference lists are permitted in the stable marriage and hospitals/residents problems, stable matchings can have different sizes. The problem of finding a maximum cardinality stable matching in this context is known to be NP-hard, even under very severe restrictions on the number, size, and position of ties. In this article, we present two new heuristics for finding large stable matchings in variants of these problems in which ties are on one side only. We describe an empirical study involving these heuristics and the best existing approximation algorithm for this problem. Our results indicate that all three of these algorithms perform significantly better than naive tie-breaking algorithms when applied to real-world and randomly-generated data sets and that one of the new heuristics fares slightly better than the other algorithms, in most cases. This study, and these particular problem variants, are motivated by important applications in large-scale centralized matching schemes

    Stable Marriage with Multi-Modal Preferences

    Full text link
    We introduce a generalized version of the famous Stable Marriage problem, now based on multi-modal preference lists. The central twist herein is to allow each agent to rank its potentially matching counterparts based on more than one "evaluation mode" (e.g., more than one criterion); thus, each agent is equipped with multiple preference lists, each ranking the counterparts in a possibly different way. We introduce and study three natural concepts of stability, investigate their mutual relations and focus on computational complexity aspects with respect to computing stable matchings in these new scenarios. Mostly encountering computational hardness (NP-hardness), we can also spot few islands of tractability and make a surprising connection to the \textsc{Graph Isomorphism} problem

    Local search for stable marriage problems with ties and incomplete lists

    Full text link
    The stable marriage problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools, or more generally to any two-sided market. We consider a useful variation of the stable marriage problem, where the men and women express their preferences using a preference list with ties over a subset of the members of the other sex. Matchings are permitted only with people who appear in these preference lists. In this setting, we study the problem of finding a stable matching that marries as many people as possible. Stability is an envy-free notion: no man and woman who are not married to each other would both prefer each other to their partners or to being single. This problem is NP-hard. We tackle this problem using local search, exploiting properties of the problem to reduce the size of the neighborhood and to make local moves efficiently. Experimental results show that this approach is able to solve large problems, quickly returning stable matchings of large and often optimal size.Comment: 12 pages, Proc. PRICAI 2010 (11th Pacific Rim International Conference on Artificial Intelligence), Byoung-Tak Zhang and Mehmet A. Orgun eds., Springer LNA

    Approximability results for stable marriage problems with ties

    Get PDF
    We consider instances of the classical stable marriage problem in which persons may include ties in their preference lists. We show that, in such a setting, strong lower bounds hold for the approximability of each of the problems of finding an egalitarian, minimum regret and sex-equal stable matching. We also consider stable marriage instances in which persons may express unacceptable partners in addition to ties. In this setting, we prove that there are constants delta, delta' such that each of the problems of approximating a maximum and minimum cardinality stable matching within factors of delta, delta' (respectively) is NP-hard, under strong restrictions. We also give an approximation algorithm for both problems that has a performance guarantee expressible in terms of the number of lists with ties. This significantly improves on the best-known previous performance guarantee, for the case that the ties are sparse. Our results have applications to large-scale centralized matching schemes

    Approximation algorithms for hard variants of the stable marriage and hospitals/residents problems

    Get PDF
    When ties and incomplete preference lists are permitted in the Stable Marriage and Hospitals/Residents problems, stable matchings can have different sizes. The problem of finding a maximum cardinality stable matching in this context is known to be NP-hard, even under very severe restrictions on the number, size and position of ties. In this paper, we describe polynomial-time 5/3-approximation algorithms for variants of these problems in which ties are on one side only and at the end of the preference lists. The particular variant is motivated by important applications in large scale centralised matching schemes

    Profile-Based Optimal Matchings in the Student-Project Allocation Problem

    Get PDF
    In the Student/Project Allocation problem (spa) we seek to assign students to individual or group projects offered by lecturers. Students provide a list of projects they find acceptable in order of preference. Each student can be assigned to at most one project and there are constraints on the maximum number of students that can be assigned to each project and lecturer. We seek matchings of students to projects that are optimal with respect to profile, which is a vector whose rth component indicates how many students have their rth-choice project. We present an efficient algorithm for finding agreedy maximum matching in the spa context – this is a maximum matching whose profile is lexicographically maximum. We then show how to adapt this algorithm to find a generous maximum matching – this is a matching whose reverse profile is lexicographically minimum. Our algorithms involve finding optimal flows in networks. We demonstrate how this approach can allow for additional constraints, such as lecturer lower quotas, to be handled flexibly

    An Exact Algorithm for TSP in Degree-3 Graphs via Circuit Procedure and Amortization on Connectivity Structure

    Full text link
    The paper presents an O^*(1.2312^n)-time and polynomial-space algorithm for the traveling salesman problem in an n-vertex graph with maximum degree 3. This improves the previous time bounds of O^*(1.251^n) by Iwama and Nakashima and O^*(1.260^n) by Eppstein. Our algorithm is a simple branch-and-search algorithm. The only branch rule is designed on a cut-circuit structure of a graph induced by unprocessed edges. To improve a time bound by a simple analysis on measure and conquer, we introduce an amortization scheme over the cut-circuit structure by defining the measure of an instance to be the sum of not only weights of vertices but also weights of connected components of the induced graph.Comment: 24 pages and 4 figure

    General Scheme for Perfect Quantum Network Coding with Free Classical Communication

    Full text link
    This paper considers the problem of efficiently transmitting quantum states through a network. It has been known for some time that without additional assumptions it is impossible to achieve this task perfectly in general -- indeed, it is impossible even for the simple butterfly network. As additional resource we allow free classical communication between any pair of network nodes. It is shown that perfect quantum network coding is achievable in this model whenever classical network coding is possible over the same network when replacing all quantum capacities by classical capacities. More precisely, it is proved that perfect quantum network coding using free classical communication is possible over a network with kk source-target pairs if there exists a classical linear (or even vector linear) coding scheme over a finite ring. Our proof is constructive in that we give explicit quantum coding operations for each network node. This paper also gives an upper bound on the number of classical communication required in terms of kk, the maximal fan-in of any network node, and the size of the network.Comment: 12 pages, 2 figures, generalizes some of the results in arXiv:0902.1299 to the k-pair problem and codes over rings. Appeared in the Proceedings of the 36th International Colloquium on Automata, Languages and Programming (ICALP'09), LNCS 5555, pp. 622-633, 200

    An Integer Programming Approach to the Student-Project Allocation Problem with Preferences over Projects

    Get PDF
    The Student-Project Allocation problem with preferences over Projects (SPA-P) involves sets of students, projects and lecturers, where the students and lecturers each have preferences over the projects. In this context, we typically seek a stable matching of students to projects (and lecturers). However, these stable matchings can have different sizes, and the problem of finding a maximum stable matching (MAX-SPA-P) is NP-hard. There are two known approximation algorithms for MAX-SPA-P, with performance guarantees of 2 and 32 . In this paper, we describe an Integer Programming (IP) model to enable MAX-SPA-P to be solved optimally. Following this, we present results arising from an empirical analysis that investigates how the solution produced by the approximation algorithms compares to the optimal solution obtained from the IP model, with respect to the size of the stable matchings constructed, on instances that are both randomly-generated and derived from real datasets. Our main finding is that the 32 -approximation algorithm finds stable matchings that are very close to having maximum cardinality
    corecore